当前位置:首页 > 大数据处理 > 正文

大数据处理分析相关面试

接下来为大家讲解大数据处理分析相关面试,以及大数据相关面试题涉及的相关信息,愿对你有所帮助。

简述信息一览:

常见大数据公司面试问题有哪些?

1、你自身最大的优点是什么 这个问题不限于大数据培训面试中,在各行各业的面试中经常出现。可是应聘者不清楚自己的优点是什么,甚至不少人喜欢说我最大的优点是没有缺点。如果面试官听到这样的回那么结果可能是被pass掉。

2、你自身的优点 这个问题不仅仅是在大数据面试当中常常被问,在各行各业的面试中都经常出现。所以面试者要尽可能说一些和工作相关的优点,比如“学习能力强”“能抗住压力”等,再举一个自己之前工作的例子进行证明,这会让面试官觉得很真实。

大数据处理分析相关面试
(图片来源网络,侵删)

3、您对大数据一词有什么了解? 大数据是与复杂和大型数据集相关的术语。关系数据库无法处理大数据,这就是为什么使用特殊的工具和方法对大量数据执行操作的原因。大数据使公司能够更好地了解其业务,并帮助他们从定期收集的非结构化和原始数据中获取有意义的信息。

面试题-关于大数据量的分布式处理

1、面试题-关于大数据量的分布式处理 题目:生产系统每天会产生一个日志文件F,数据量在5000W行的级别。文件F保存了两列数据,一列是来源渠道,一列是来源渠道上的用户标识。文件F用来记录当日各渠道上的所有访问用户,每访问一次,记录一条。

2、MapReduce不能产生过多小文件的原因是默认情况下,TextInputFormat切片机制会将文件作为单独的切片交给MapTask处理,导致产生大量小文件和MapTask,处理效率低下。优化策略包括在数据处理的最前端合并小文件或使用CombineFileInputformat进行切片。

大数据处理分析相关面试
(图片来源网络,侵删)

3、Flink是一个分布式流处理框架,支持实时处理和批处理,具有低延迟、高吞吐和高可用性。它提供Java、Scala和Python等多种API,由JobManager、ResourceManager、TaskManager和Dispatcher组成,协同工作以高效处理海量流式数据。

4、大数据(Hadoop)面试题及答案概要 Hadoop是一个由Apache基金会开发的分布式系统框架,旨在处理海量数据的存储和计算。它以四个主要优势——高可靠性、高扩展性、高效性和高容错性,为核心特性。Hadoop技术生态体系包括Sqoop、Flume、Kafka、Spark、Flink等工具,它们在数据处理的不同环节中发挥关键作用。

5、HDFS是分布式文件系统,用于存储文件,通过目录树定位文件。4 HDFS的存储机制 HDFS对文件切割后分布存储,优化处理数据,满足大文件存储与计算需求。5 HDFS的副本机制 文件Block在多个副本中保存,提供容错机制,副本丢失自动恢复。

6、大数据的本质与特性 大数据是处理海量、高速增长和多样性的数据,以提取价值和驱动业务决策的关键工具。其五大特征,Volume(数据量)、Velocity(速度)、Variety(多样性)、Veracity(准确性)和Value(价值),是理解其核心的关键。

大厂数据分析面试题,大数据结构化面试?

熟悉数据结构原理,复杂的项目无需为需求实现原理而烦恼。优化能力提升 随着了解的加深,能够发现与工作中数据结构特性相违背的代码,并具有优化修改的能力。提高面试成功率 学习50%以上互联网公司数据结构的面试问题纲领,提高面试合格率。

大数据的本质与特性 大数据是处理海量、高速增长和多样性的数据,以提取价值和驱动业务决策的关键工具。其五大特征,Volume(数据量)、Velocity(速度)、Variety(多样性)、Veracity(准确性)和Value(价值),是理解其核心的关键。

你知道使用在统计或者计算科学中的“经验法则”吗?或者在商业分析中。

大数据是与复杂和大型数据集相关的术语。关系数据库无法处理大数据,这就是为什么使用特殊的工具和方法对大量数据执行操作的原因。大数据使公司能够更好地了解其业务,并帮助他们从定期收集的非结构化和原始数据中获取有意义的信息。大数据还使公司能够根据数据做出更好的业务决策。

大数据是与复杂和大型数据集相关的术语。关系数据库无法处理大数据,这就是使用特殊工具和方法对大量数据执行操作的原因。大数据使公司能够更好地了解其业务,并帮助他们从定期收集的非结构化和原始数据中获取有意义的信息。大数据还允许公司***取数据支持的更好的业务决策。

传统数据基础设施:主要使用存储在高端和昂贵硬件中的“structured data,结构化数据”主要处理为ETL批处理作业,用于将数据提取到RDBMS和数据仓库系统中进行数据挖掘,分析和报告,以进行关键业务决策。主要处理以千兆字节到兆字节为单位的数据量。

大数据面试题:Spark的任务执行流程

当程序提交后,SparkSubmit进程与Master通信,构建运行环境并启动SparkContext。SparkContext向资源管理器(如Standalone、Mesos或YARN)注册并申请执行资源。2)资源管理器分配Executor资源,Standalone模式下通过StandaloneExecutorBackend启动Executor。Executor运行状态会定期上报给资源管理器。

答案:Spark运行流程涉及任务提交、调度、执行和结果收集。应用通过SparkContext启动,创建RDD,然后通过一系列转换和行动算子执行计算任务,最后收集结果。面试题3:解释RDD在Spark中的定义。答案:RDD,即Resilient Distributed Dataset,是Spark的基本数据抽象,代表一个不可变、可分区的并行计算***。

理解Spark的运行机制是关键,主要考察Spark任务提交、资源申请、任务分配等阶段中各组件的协作机制。参考Spark官方工作流程示意图,深入理解Spark运行流程。Spark运行模式 Spark运行模式包括Local、Standalone、Yarn及Mesos。其中,Local模式仅用于本地开发,Mesos模式在国内几乎不使用。

Spark的运行流程可以分为几个步骤:首先,driver(用户编写的Spark程序)创建SparkContext或SparkSession,并与Cluster Manager通信,将任务分解成Job。Job由一系列Stage组成,Stage之间的执行是串行的,由shuffle、reduceBy和save等操作触发。

SortShuffleManager在Spark 2引入,它改进了数据的处理流程。在Shuffle阶段,数据写入内存结构,当内存结构达到一定大小时(默认5M),内存结构会自动进行排序分区并溢写磁盘。这种方式在Shuffle阶段减少了磁盘小文件的数量,同时在Shuffle Read阶段通过解析索引文件来拉取数据,提高了数据读取的效率。

大数据开发工程师面试主要面试哪些内容?

在数据仓库方面,建模和数据模型的问题是面试的重要内容,能够说明求职者理解数据结构与分析。对于偏向数仓开发的岗位,更深入的技术问题会涉及到SparkSql和SparkStreaming的底层原理、内核和任务提交过程,以及与MapReduce的对比。

Java是必问的,不过问的不深,把Javase部分吃透,足以应付Java部分的面试。(2)Hadoop生态,Yarn、Zookeeper、HDFS这些底层原理要懂,面试经常被问。(3)Mapreduce的shuffle过程这个也是面试被常问的。(4)Hbase和HIve,搞大数据这些不懂真的说不过去。

最后,Hive的存储格式、join操作原理以及parquet文件的优势也是常考内容。对于面试者来说,熟悉这些基础知识,能有效提升面试表现。如果你觉得这篇文章有所帮助,不妨收藏并给予支持,你的反馈是我们持续更新的动力。持续关注【大数据的奇妙冒险】公众号,获取更多实用内容。

部署大数据解决方案的第一步是数据提取,即从各种来源提取数据。数据源可以是像Salesforce这样的CRM,像SAP这样的企业资源规划系统,像MySQL这样的RDBMS或任何其他日志文件,文档,社交媒体源等。数据可以通过批处理作业或实时流来提取。然后将提取的数据存储在HDFS中。

大数据工程师 = 系统工程 + 大规模数据处理 + 数据分析 + 机器学习 + 商业智能 大数据工程师首先是一个系统工程师,也是一个软件工程师。

关于大数据处理分析相关面试,以及大数据相关面试题的相关信息分享结束,感谢你的耐心阅读,希望对你有所帮助。